Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: Evidence for coupled carbonate dissolution and reprecipitation
نویسندگان
چکیده
Studies of the dC of pore water dissolved inorganic carbon (dC-DIC) were carried out in shallow water carbonate sediments of the Great Bahamas Bank (GBB) to further examine sediment–seagrass relationships and to more quantitatively describe the couplings between organic matter remineralization and sediment carbonate diagenesis. At all sites studied dC-DIC provided evidence for the dissolution of sediment carbonate mediated by metabolic CO2 (i.e., CO2 produced during sediment organic matter remineralization); these observations are also consistent with pore water profiles of alkalinity, total DIC and Ca at these sites. In bare oolitic sands, isotope mass balance further indicates that the sediment organic matter undergoing remineralization is a mixture of water column detritus and seagrass material; in sediments with intermediate seagrass densities, seagrass derived material appears to be the predominant source of organic matter undergoing remineralization. However, in sediments with high seagrass densities, the pore water dC-DIC data cannot be simply explained by dissolution of sediment carbonate mediated by metabolic CO2, regardless of the organic matter type. Rather, these results suggest that dissolution of metastable carbonate phases occurs in conjunction with reprecipitation of more stable carbonate phases. Simple closed system calculations support this suggestion, and are broadly consistent with results from more eutrophic Florida Bay sediments, where evidence of this type of carbonate dissolution/reprecipitation has also been observed. In conjunction with our previous work in the Bahamas, these observations provide further evidence for the important role that seagrasses play in mediating early diagenetic processes in tropical shallow water carbonate sediments. At the same time, when these results are compared with results from other terrigenous coastal sediments, as well as supralysoclinal carbonate-rich deep-sea sediments, they suggest that carbonate dissolution/reprecipitation may be more important than previously thought, in general, in the early diagenesis of marine sediments. ! 2006 Elsevier Inc. All rights reserved.
منابع مشابه
The Widespread Occurrence of Coupled Carbonate Dissolution/Reprecipitation in Surface Sediments on the Bahamas Bank
Using two complimentary approaches (pore water advection/diffusion/ reaction modeling and stable isotope mass balance calculations) we show that carbonate dissolution/reprecipitation occurs on early diagenetic time scales across a broad range of sediments on the Great Bahamas Bank. The input of oxygen into the sediments, which strongly controls sediment carbonate dissolution, has two major sour...
متن کاملShallow Marine Carbonate Dissolution and Early Diagenesis-Implications from an Incubation Study
Surface carbonate sediments from sites on the Bahamas Bank with different seagrass densities were incubated across a range of O2 delivery rates, to study the controls on metabolic carbonate dissolution in these sediments. The results confirmed the 1:1 ratio between the rates of O2 consumption and carbonate dissolution, demonstrating that microbial respiration was the ratelimiting step in metabo...
متن کاملThe role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments
Sediment-bound phosphorus (P) is a potential nutrient source for P-limited seagrasses inhabiting carbonate sediments. We explored the role of organic acid (OA) exudation by seagrasses in liberating mineral P from carbonate sediments. Organic acids can act to increase available P by dissolving carbonate sediment, competing with P for binding sites and complexing dissolution end products, and als...
متن کاملImpact of Sea Grass Density on Carbonate Dissolution in Bahamian Sediments
Carbonate dissolution has been widely observed in shallow water tropical sediments. However, sediment budgets have generally not been closed with respect to the amount of acid required to produce the observed carbonate dissolution. Recently it has been suggested that enhanced oxygen transport into sediments through the roots and rhizomes of sea grasses might play a role in resolving this mass b...
متن کاملDIAGENESIS AND RESERVOIR QUALITY EVOLUTION OF SHELF-MARGIN SANDSTONES IN PEARL RIVER MOUTH BASIN, SOUTH CHINA SEA
A study of the diagenetic evolution of sandstones from Panyu low-uplift in the Pearl River Mouth Basin was carried out to unravel the controls on shelf margin sandstone reservoir quality. The reservoir rocks, Oligocene volcanic clastic sandstones of the Zhuhai Formation, have a burial depth of 2765 to 3440 m. 70 samples were studied using the granulometric analyses, X-ray diffraction (XRD) anal...
متن کامل